Nanochemistry,
Edition 1 Chemistry of Nanoparticle Formation and InteractionsEditors: By Anna Klinkova and Héloïse Thérien-Aubin
Conformance
-
PDF/UA-1
-
The publication was certified on 20250710
-
For queries regarding accessibility information, contact [email protected]
Ways Of Reading
-
This e-publication is accessible to the full extent that the file format and types of content allow, on a specific reading device, by default, without necessarily including any additions such as textual descriptions of images or enhanced navigation.
Navigation
-
The contents of the PDF have been tagged to permit access by assistive technologies as per PDF-UA-1 standard.
-
Page breaks included from the original print source
Additional Accessibility Information
-
The language of the text has been specified (e.g., via the HTML or XML lang attribute) to optimise text-to-speech (and other alternative renderings), both at the whole document level and, where appropriate, for individual words, phrases or passages in a different language.
Note
-
This product relies on 3rd party tooling which may impact the accessibility features visible in inspection copies. All accessibility features mentioned would be present in the purchased version of the title.
Nanochemistry: Chemistry of Nanoparticle Formation and Interactions provides an overview of the chemistry aspects of nanoparticle science, including nanoparticle synthesis, chemical properties, stability, applications and self-assembly behavior. The critical concepts discussed in this book represent the necessary toolbox for enabling the rational design of nanoparticle-based materials for target applications. After an introduction to standard analytical techniques used for nanoparticle characterization, four separate chapters cover inorganic, organic, polymer nanoparticles, and carbon nanostructures to highlight the synthetic protocols, structural intricacies, and chemical properties specific to each of these material classes.
Finally, physicochemical phenomena governing self-assembly behavior of nanoparticles are also discussed in detail separately. This book is intended for senior undergraduate, graduate and postgraduate students and research scientists in nanoscience and nanotechnology, material science, chemistry, physics, biomedical sciences and relevant engineering fields that want to develop a deeper understanding of the governing chemical principles on the nanoscale.
Key Features
- Provides an up-to-date text reflecting the latest changes in the field, acting as a fully restructured successor text to Nanochemistry, 2nd Edition (Elsevier, 2013) by Klabunde and Sergeev
- Leads the reader through the fundamental concepts and illustrative examples of inorganic, organic, and polymer nanoparticle formation, discussing, in detail, the aspects of synthetic geometry control, surface chemistry, and nanoparticle stability
- Provides in-depth coverage of nanoparticle self-assembly behavior, including the self-assembly driving forces and approaches to control this process through nanoparticle design and environmental cues
About the author
By Anna Klinkova, Assistant Professor, Department of Chemistry Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, Canada and Héloïse Thérien-Aubin, Assistant Professor, Department of Chemistry, Memorial University of Newfoundland, Canada
Senior undergraduate, graduate and postgraduate students and research scientists in nanoscience and nanotechnology, material science, chemistry, physics, biomedical sciences and relevant engineering fields that want to develop a deeper understanding of the governing chemical principles on the nanoscale